Multi-Label Learning by Instance Differentiation
نویسندگان
چکیده
Multi-label learning deals with ambiguous examples each may belong to several concept classes simultaneously. In this learning framework, the inherent ambiguity of each example is explicitly expressed in the output space by being associated with multiple class labels. While on the other hand, its ambiguity is only implicitly encoded in the input space by being represented by only a single instance. Based on this recognition, we hypothesize that if the inherent ambiguity can be explicitly expressed in the input space appropriately, the problem of multi-label learning can be solved more effectively. We justify this hypothesis by proposing a novel multi-label learning approach named INSDIF. The core of INSDIF is instance differentiation that transforms an example into a bag of instances each of which reflects the example’s relationship with one of the possible classes. In this way, INSDIF directly addresses the inherent ambiguity of each example in the input space. A two-level classification strategy is employed to learn from the transformed examples. Applications to automatic web page categorization, natural scene classification and gene functional analysis show that our approach outperforms several well-established multi-label learning algorithms.
منابع مشابه
Exploiting Associations between Class Labels in Multi-label Classification
Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...
متن کاملLearnability of Multi - Instance Multi - Label Learning
Multi-Instance Multi-Label learning (MIML) is a new machine learning framework where one data object is described by multiple instances and associated with multiple class labels. During the past few years, many MIML algorithms have been developed and many applications have been described. However, there lacks theoretical exploration to the learnability of MIML. In this paper, through proving a ...
متن کاملMulti-Instance Multi-Label Learning with Application to Scene Classification
In this paper, we formalize multi-instance multi-label learning, where each training example is associated with not only multiple instances but also multiple class labels. Such a problem can occur in many real-world tasks, e.g. an image usually contains multiple patches each of which can be described by a feature vector, and the image can belong to multiple categories since its semantics can be...
متن کاملMulti-Label Learning with Label Enhancement
Multi-label learning deals with training instances associated with multiple labels. Many common multi-label algorithms are to treat each label in a crisp manner, being either relevant or irrelevant to an instance, and such label can be called logical label. In contrast, we assume that there is a vector of numerical label behind each multi-label instance, and the numerical label can be treated a...
متن کاملMulti-Label Learning with Weak Label
Multi-label learning deals with data associated with multiple labels simultaneously. Previous work on multi-label learning assumes that for each instance, the “full” label set associated with each training instance is given by users. In many applications, however, to get the full label set for each instance is difficult and only a “partial” set of labels is available. In such cases, the appeara...
متن کامل